Главная страница
Top.Mail.Ru    Яндекс.Метрика
Текущий архив: 2009.10.18;
Скачать: CL | DM;

Вниз

Провести линию параллельно заданной через заданные координаты   Найти похожие ветки 

 
Сергей_Власов   (2009-08-13 13:22) [0]

Здраствуйте.
Как провести линию параллельно заданной,
если известны координаты начала и конца заданной линии,
начало будущей параллельной прямой и длина отрезка?
Спасибо.


 
KilkennyCat ©   (2009-08-13 13:34) [1]

могу подарить учебник геометрии. неполенюсь, сворую в библиотеке и пришлю.


 
Palladin ©   (2009-08-13 13:44) [2]

пипец.... увеличить первую координату на разницу между перовой А и первой Б... 6 класс максимум...


 
Jeer ©   (2009-08-13 14:03) [3]


>  6 класс максимум...


Не.. это на след.год задание по ЕГЭ. За год надо решить.


 
Дуб ©   (2009-08-13 14:18) [4]

> Как провести линию параллельно заданной,


> длина отрезка?


Задан отрезок и надо найти конец другого отрезка такого, что оба лежат на параллелных линиях, при этом один задан, а у второго известно начало и длина? А направление? Их два.


 
Inovet ©   (2009-08-13 14:22) [5]

> [4] Дуб ©   (13.08.09 14:18)
> а у второго известно начало и длина? А направление? Их
> два.

Эээ. Задано начало прямой.


 
Дуб ©   (2009-08-13 14:32) [6]


> Эээ. Задано начало прямой.

Ты меня прямо убил. Сразил вот прямо. :)

А класс это 9-й по нынешней программе.


 
Inovet ©   (2009-08-13 14:42) [7]

> [6] Дуб ©   (13.08.09 14:32)
>
> > Эээ. Задано начало прямой.
>
> Ты меня прямо убил. Сразил вот прямо. :)
> А класс это 9-й по нынешней программе.

Ну вот. А то 6-й, 6-й.:)


 
Юрий Зотов ©   (2009-08-13 15:32) [8]

> Сергей_Власов   (13.08.09 13:22)

Уравнение прямой на плоскости имет вид Y = AX + B. Чтобы ее провести, надо найти A и B.

A - это угловой коэффициент. Линии параллельны, поэтому для обоих линий он будет одинаковым и равным:
A = (Y1 - Y2) / (X1-X2)
где (X1, Y1) и (X2, Y2) - координаты начала и конца первой линии.

Итак, A мы нашли - теперь надо найти B для второй линии. Мы знаем, что вторая линия начинается в точке (Xн, Yн) - значит, можно записать уравнение:
Yн = AXн + B
отсюда B =  Yн - AXн.

Осталось найти координаты конца отрезка второй линии (Xк, Yк). Его длину мы знаем (обозначим ее L), а еще мы знаем теорему Пифагора. Значит, получаем систему двух уравнений:
L = (Xк - Xн)^2 + (Yк - Yн)^2
Yк = AXк + B

Осталось только решить эту систему и найти (Xк, Yк). Вот это уже точно простенькая школьная задачка и с ней Вы легко справитесь сами.


 
Sha ©   (2009-08-13 16:04) [9]

Еще вариант.
При помоши параллельного переноса перенести заданный отрезок в нужную точку (к началу искомого отрезка).
Затем при помощи подобия увеличить/уменьшить длину полученного отрезка до заданной.
Этот метод работает даже для случая прямой, параллельной оси Y.


 
Сергей М. ©   (2009-08-13 16:21) [10]


> Сергей_Власов   (13.08.09 13:22)  



> начало .. прямой


У прямой не может быть ни начала ни конца, на то она и прямая)
Начало и конец может быть лишь у отрезка прямой.


> и длина отрезка


Она для решения задачи не нужна.


 
Дуб ©   (2009-08-13 16:23) [11]

> Ну вот. А то 6-й, 6-й.:)

Это не я. :)

Но, ответа от меня не будет пока не будет ответа на мой вопрос. Почему бросаются решать задачу не узнав его - для меня секрет.


 
Дуб ©   (2009-08-13 16:24) [12]

> Она для решения задачи не нужна.

Ты задачу еще не понял, а рецепт уже выписал. Хороший доктор.


 
Сергей М. ©   (2009-08-13 16:34) [13]


> Дуб ©   (13.08.09 16:24) [12]


Понятливый ты наш)
Вот приедет барин - барин нас рассудит)


 
Дуб ©   (2009-08-13 16:35) [14]

> Сергей М. ©   (13.08.09 16:34) [13]

Согласный. Но его напугали, кажется. А про начало у прямой, есть анек хороший, про пиво в углу. :)


 
Inovet ©   (2009-08-13 16:56) [15]

> [11] Дуб ©   (13.08.09 16:23)
> Но, ответа от меня не будет пока не будет ответа на мой
> вопрос.

Автор потерялся где-то в начале прямой.:)
У ЮЗ два решения будет, что в такой постановке наверно правильно.


 
Дуп   (2009-08-13 17:03) [16]

> Inovet ©   (13.08.09 16:56) [15]
> У ЮЗ два решения будет,

У него сложно, к тому же не все прямые записываются в таком виде.

Там все проще. Надо допилить [2] небольшим напильником, ну и все-таки, я настаиваю, получить ответ на мой вопрос.


 
Сергей М. ©   (2009-08-13 17:09) [17]


> Надо допилить [2] небольшим напильником


И к какому же боку этого напильника приложить "известную длину отрезка" ?)


 
Дуп   (2009-08-13 17:13) [18]

> Сергей М. ©   (13.08.09 17:09) [17]

Простым. Вот Sha понял. И я понял. Но ответ я не скажу, пока барин не объявится и не ответит нам ой вопрос. Уж извини.

Отвечать в своем стиле не спеши, разрешаю посчитать до 10.


 
Сергей М. ©   (2009-08-13 17:29) [19]

А.. сообразил) ..
Угу, был неправ.
Смутила чехарда с "начало .. прямой".

Ну тады [4] в топку : направление будущего вектора известно)


 
Дуп   (2009-08-13 17:37) [20]

> Сергей М. ©   (13.08.09 17:29) [19]
> Ну тады [4] в топку

Это не так. Стыдно, товарищ. :)


 
Inovet ©   (2009-08-13 17:41) [21]

> [16] Дуп   (13.08.09 17:03)
> Там все проще. Надо допилить [2] небольшим напильником,
> ну и все-таки, я настаиваю, получить ответ на мой вопрос.

Напильник видимо взять из
http://delphimaster.net/view/1-1249673444/


 
Дуб ©   (2009-08-13 17:47) [22]

> Inovet ©   (13.08.09 17:41) [21]

Это безусловно. Да все слова сказаны, все давно сделано. Вопрос решен. Остался один. В какую все-таки сторону. В этой задаче вообще ничего нет. кроме того, что автор должен:
1. Прийти и сформулировать задачу хотя бы в теримнах предоженных мной в [4]
2. Понять что 2 варианта и определиться.

Все. Это просто педагогический момент. Копий заний ломать тут не надо.

А там. Там есть еще один момент тонкий. Но он за рамками школы. Уже. Например. доказать, что 2 треугольника с равными углами подобны. Это не так смешно и просто, как может показаться.


 
Sha ©   (2009-08-13 20:07) [23]

> Дуб ©   (13.08.09 17:47) [22]
> доказать, что 2 треугольника с равными углами подобны

Доказательство вполне в рамках школы.
Совмещаем вершины B и b с одинаковыми углами.
Совмещаем стороны AB и ab.
Стороны BC и bc совпадут, иначе углы B и b не равны.
Основания AC и ac параллельны, иначе имеем треугольник с суммой углов, не равной 180 градусов.
По т. Фалеса боковые стороны пропорциональны.
Повторяем те же рассуждения, совмещая вершины A и a.
Все.


 
Smile   (2009-08-13 20:21) [24]

Странно "длиНННая" ветка.
Тем более странная в отсутствии автора топика
:(


 
Сергей М. ©   (2009-08-13 20:30) [25]


> Дуп   (13.08.09 17:37) [20]


С чего бы вдруг товарищу устыдиться-то ?)
Впрочем ждём барина)


 
Сергей М. ©   (2009-08-13 20:34) [26]


> Дуб ©   (13.08.09 17:47) [22]


> просто педагогический момент


Тут, товарищ, сам знаешь сколько педагогов)

Педагог на педагоге педагогом погоняет)


 
имя   (2009-08-13 22:54) [27]

Удалено модератором


 
Sha ©   (2009-08-13 23:13) [28]

Удалено модератором


 
Дуб ©   (2009-08-14 04:04) [29]

> По т. Фалеса боковые стороны пропорциональны.

Тут то и затык, о которм говорю. т.Фаллеса существует в двух ипостасях. Простая и расширенная. Расширенная теми же греками воспринималась только для рациональных отношений. Собсно в школе есть попытка доказать ее аналог для всех чисел. У нас это было у Погорелова в первом параграфе главы про прямоугольные треугольники когда вводился косинус и показывалась его корректность. Строгостью оно не отличается. По сути это шаткий момент, но после него действительно выходим на оперативный простор. По-хорошему, четко вышли из этого только в 19-м веке, а ученики на 1-м курсе института во введени в анализ.

> cosmo   (13.08.09 22:54) [27]

Ответ у задачи - 1 строка. Его давно дали.


 
Дуб ©   (2009-08-14 04:07) [30]

> По т. Фалеса боковые стороны пропорциональны.

Ну и тут то, о чем и писал в той ветке, что это узкое горлышко подобия и фалесса связаны. Мимо не пройти.


 
Sha ©   (2009-08-14 09:20) [31]

>> По т. Фалеса боковые стороны пропорциональны.

> Дуб ©   (14.08.09 04:04) [29]
> Тут то и затык, о которм говорю. т.Фаллеса существует в двух ипостасях.

Очевидно, что имелась расширенная формулировка (обобщенная теорема Фалеса).

А затыка с ее доказательством тоже нет, все в рамках школы:
http://files.school-collection.edu.ru/dlrstore/4bda22d4-16e4-4015-a173-e58ad351a327/%5BG89D_8-03-02-32%5D_%5BML_004-1%5D.swf


 
Дуб ©   (2009-08-14 10:03) [32]

> Sha ©   (14.08.09 09:20) [31]

Есть все-таки. Но для школы сойдет.


 
Inovet ©   (2009-08-14 10:28) [33]

> [32] Дуб ©   (14.08.09 10:03)
> > Sha ©   (14.08.09 09:20) [31]
>
> Есть все-таки. Но для школы сойдет.

А в Вики видели доказательство подобия треугольников
http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%B4%D0%BE%D0%B1%D0%B8%D0%B5_%D1%82%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA%D0%BE%D0%B2


 
Sha ©   (2009-08-14 10:56) [34]

> Inovet ©   (14.08.09 10:28) [33]

Там тоже метод площадей.

На мой взгляд, через т.Фалеса доказывать выгоднее,
т.к. она имеет самостоятельную ценность.


 
Дуб ©   (2009-08-14 11:02) [35]

> Sha ©   (14.08.09 09:20) [31]

Ага. Это как и с т.Пифагора. Или вводом косинуса и тем путем, что говорил или через площади. Тут и это через площади. Но с площадями и корректностью тоже вопрос. Хотя уже подумать надо где затык. Все равно на каком-нить этапе иррациональности должны вылазить - интересна то цепочка. В учебнике вся цепь выстраивается с аксиом. Ежели просто оперировать уже готовыми теоремами всего курса, то можно сотни докв привести. Мне и через т.синусов приводили. Кругов можно много накрутить так.


 
Sha ©   (2009-08-14 11:30) [36]

> Дуб ©   (14.08.09 11:02) [35]
> Все равно на каком-нить этапе иррациональности должны вылазить

Иррациональность давим в самом начале, например:
http://moodle.nci.kz/mod/resource/view.php?id=938
а потом свободно используем метод площадей, например, в той же т.Фалеса.


 
Дуб ©   (2009-08-14 11:31) [37]

> Inovet ©   (14.08.09 10:28) [33]

Там площади. А с ними синусы и косинусы. Получается вопрос - почему вообще у угла есть характеристика синус и косинус? Определение(для острых): строим на угле прямоугольный треугольник и считаем отношения катетов к гипотенузе. Строим другой сичтаем эти же отношения. почему они равны? Потому что треуголдьники подобны. а почему треугольники подобны? Потому что площади рассчитаные через синус-косинус вот так, а почему есть синус-косинус, потому что подобны...Ну, понятно, да? :)

Все-таки к обобщенной первый подход идет из первой с равными отрезками. оно обощается на целые числа, а потом и на дроби. Ко всем же по принципу наглядности только. Хотя и достаточно для школы.


 
Sha ©   (2009-08-14 11:47) [38]

> Дуб ©   (14.08.09 11:31) [37]

Не все так плохо:
Сначала понятие площади фигуры со свойствами-аксиомами.
Далее площадь прямоугольника.
Площадь прямоугольного треугольника.
Площадь треугольника.
Обобщенная т. Фалеса.
А дальше что душе угодно: подобие, пифагор, синус/косинус...


 
Дуб ©   (2009-08-14 12:26) [39]

> Не все так плохо:
> Сначала понятие площади фигуры со свойствами-аксиомами.

Я полный курс от начала до конца с площадями не проходил. У сына вроде как раз в учебнике выстроено через это, надо будет просмотреть, что там царапнет. Тот же параграф у Погорелова царапнул. Что удивительно, его почти никто не помнит. А там по сути и док-ся обобщенная теорем Фалеса. Хотя и маскируется под док-во корректности введеного понятия косинус.

Надо посмотреть как с аксимомами, потому что аксиомы - они площадей изначально не задевают.

А давить именно придется. В математике же как, раз ушки вылезли - будут везде. Просто при одном подходе они очевидны, в другом не так. Там же у Погорелова тоже давят - появляется предел. :)

> А дальше что душе угодно: подобие, пифагор, синус/косинус.
> ..

Ровно так. Я и говорю, проскочив ее сразу вырываемся на оперативный простор. Вообще, из школьной геометрии достаточно вынести несколько теорем и этого достаточно. Эта - одна из главных.


 
Inovet ©   (2009-08-14 12:39) [40]

> [37] Дуб ©   (14.08.09 11:31)
> > Inovet ©   (14.08.09 10:28) [33]
> Ну, понятно, да? :)

Это ты показываешь где иррациональность в площадях прячется. Но как она мешает доказательству не понятно.


 
Дуб ©   (2009-08-14 13:26) [41]

>Это ты показываешь где иррациональность в площадях прячется.

Да, я показываю то, что и хотел показать. Или ты думаешь, я буду доказывать, что 2*2=5 или Земля квадратная?

>Но как она мешает доказательству не понятно

Если считать утверждения лежащие в его основе безупречными - никак. Но я ведь и про них спрошу - почему и так далее. Изначально у нас только аксиомы Евклида. И как бы мы ни шли потом, мы не обойдем указанный факт. Я ровно только про это, а не то, что вообще никто, никогда, и уж тем более используя теоремы полученные в дальнейшем, или на более раннем, но также подмяв этот момент.


 
Дуб ©   (2009-08-14 17:27) [42]

> Sha ©   (14.08.09 11:30) [36]
> > Дуб ©   (14.08.09 11:02) [35]
> > Все равно на каком-нить этапе иррациональности должны
> вылазить
>
> Иррациональность давим в самом начале, например:
> http://moodle.nci.kz/mod/resource/view.php?id=938

Аха. Добрался до инета, смог скачать ссылку.
И? Это  ожидал.

Вот то и получаем. Ровно то же самое доказательство. Только там фалесное делилось, - тут площадное. И там и там пределы. Про них и речь была.

Не давится. Давится - для школы. А я и писал вопрос, по-серьезному - выходит за пределы школы. В науке это 19 век, для школы - это высшая, 1-й курс.


 
Sha ©   (2009-08-14 18:48) [43]

> Дуб ©   (14.08.09 17:27) [42]
> Не давится. Давится - для школы. А я и писал вопрос, по-серьезному - выходит за пределы школы.
> В науке это 19 век, для школы - это высшая, 1-й курс.

Если так рассуждать, то и площадь (теория меры и интеграла) - высшая математика.
Однако это не мешает пятиклассникам решать задачи про сбор урожая с полей и огородов.


 
Дуб ©   (2009-08-15 05:02) [44]

> Если так рассуждать, то и площадь (теория меры и интеграла)
> - высшая математика.

Не так. Вводимое в 5 классе или где еще и как, те же формулы ускорения и пути в 8-м не претендуют на логическую стройность и завершенность. А вот предмет под названием геометрия в школе - как раз на это претендует. Тут и разница.


 
Дуб ©   (2009-08-15 05:05) [45]

> Sha ©   (14.08.09 18:48) [43]
> Если так рассуждать, то и площадь (теория меры и интеграла)
> - высшая математика.
> Однако это не мешает пятиклассникам решать задачи про сбор
> урожая с полей и огородов.

Многое что и чего не мешает. В школе часто опрерируют тем, что просто дается. Я лишь и указал, что во всей стройной системе школьной геометрии есть момент, который имеет с точки зрения более зрелого ума изъян. И изъян этот наглядно замечается как раз на обобщенной т.Фалеса. Или ты думал, что я буду показывать, что в школе все ошибка?


 
Sha ©   (2009-08-15 06:57) [46]

> Дуб ©   (15.08.09 05:05) [45]
> И изъян этот наглядно замечается как раз на обобщенной т.Фалеса.

"Школьное" доказательство обобщенной теоремы Фалеса через

http://moodle.nci.kz/mod/resource/view.php?id=938
http://files.school-collection.edu.ru/dlrstore/4bda22d4-16e4-4015-a173-e58ad351a327/%5BG89D_8-03-02-32%5D_%5BML_004-1%5D.swf

ничуть не менее строгое, чем "институтское".

> Или ты думал, что я буду показывать, что в школе все ошибка?

А это зачем? Мы доказательство обсуждаем или меня?


 
Дуб ©   (2009-08-15 12:16) [47]

> ничуть не менее строгое, чем "институтское".

Не так. Потому что опрерируемт понятими не введеными ранее и уж точно не 5-ю аксииомами Евклида. А именно понятием действительного числа. Строго это вводится только в высшей школе - через сечения Дедкинда например. Поэтому данное рассужддение строгим являетсчя только в рамках школы. Так же как и строгими являются рассуждения Эйлера до определнного развития. Все это верно, но не строго. Для школьника, я могу и в пятисотый раз повтроить, мне не сложно - этого достаточно, да. Можешь считать это строгим, на здоровье. Могу лишь добваить, что это еще не все. Действительно строгиме формализмы по Евклиду появилсь еще позже и уж точно не сводятся к 5 аксиомам. Начальные же моменты, и те что я указал, домстаточной строгостью не обладают, а в значительной мере аппелируют к интуитивным знаниям не формализованным строго в изложении. У меня все.

> А это зачем? Мы доказательство обсуждаем или меня?

Не тебя, но выводы странные. По меньшей мере.


 
Дуб ©   (2009-08-15 12:28) [48]

> http://moodle.nci.kz/mod/resource/view.php?id=938
> http://files.school-collection.edu.ru/dlrstore/4bda22d4-
> 16e4-4015-a173-e58ad351a327/%5BG89D_8-03-02-32%5D_%5BML_004-
> 1%5D.swf

И не надо этого - через площади. Я вышу уже указал, как это делается быстрее с ровно той же строгостью. Для рациональных чисел т.Фалеса доказывается на ура даже в 6 классе, с абсолютной строгостью. А потом делаеьтся рровно тот же самый финту ушами, что и в тех самых площадях - от рациональных переходят ко всем пределами. Да, для школьника такой быстрый шаг достаточен, но при более строгом пордходе надо перед этим сказать еще очень много слов. Если они не сказаны - то получается осадок. Но подавляющее число граждан его безусловно не замечают. Им этого достаточно. Ну и ладушки. Когда это в 5-м классе, это понятно. Но вот когда и чуть позже - уже вызывает удивление.


 
Дуп   (2009-08-15 14:24) [49]

> Да, для школьника такой быстрый шаг достаточен, но при более
> строгом пордходе надо перед этим сказать еще очень много
> слов.

А проблема не в доказательстве, а в том, что действительных чисел и операций с ними просто нет в школе в тот момент. В самом доказательстве дефектов нет. Дефекты в начальных данных. У школьника в его программе они одни, у того кто уже - другие. Тут и дискомфорт, который вызывало у меня это доказателство в школе.

По сути все тут:

> Inovet ©   (14.08.09 12:39) [40]
> Это ты показываешь где иррациональность в площадях прячется.


Отсюда, видимо, и получилось взаимонепонимание. С разных площадок спускаемся к вопросу.



Страницы: 1 2 вся ветка

Текущий архив: 2009.10.18;
Скачать: CL | DM;

Наверх




Память: 0.62 MB
Время: 0.02 c
15-1249654837
девушка
2009-08-07 18:20
2009.10.18
Кого-нибудь дергали в связи с 152-ФЗ ?


2-1249906240
abun
2009-08-10 16:10
2009.10.18
Фильтрация массива чисел от шума


15-1250235878
Taur
2009-08-14 11:44
2009.10.18
Delphi 2005 Не корректно отображается код


15-1250594396
Vera
2009-08-18 15:19
2009.10.18
JvComponentBase


15-1250510423
Художник
2009-08-17 16:00
2009.10.18
Изменить толщину пера при растривании вектора