Форум: "Прочее";
Текущий архив: 2010.08.27;
Скачать: [xml.tar.bz2];
ВнизОкружность-круг, а квадрат, треугольник и etc не имеют "пары" Найти похожие ветки
← →
БарЛог © (2010-02-15 10:05) [40]Думкин © (15.02.10 05:46) [37]
> А по теме - о каких парах речь?
БарЛог © (14.02.10 21:18) [22]
oldman © (14.02.10 21:28) [26]
> Глина - куб
> Фольга - поверхность куба
> Проволока - каркас куба
Но названия то не уникальные, вот в чем дело, они все "завязаны" на слове "куб".
И кстати, из проволоки не сделаешь "каркас шара".
← →
DVM © (2010-02-15 10:25) [41]
> Думкин © (15.02.10 05:56) [38]
> Это ГМТ тем не менее. :)
Сомневаюсь. Какое общее свойство у точек поверхности куба?
← →
Думкин © (2010-02-15 11:06) [42]> DVM © (15.02.10 10:25) [41]
> Сомневаюсь. Какое общее свойство у точек поверхности куба?
То что они принадлежат границе? Что ты вкладываешь в эти слова - ГМТ? Можно ведь и норму ввести модульную, если хочется аналогии с окружностью.
> БарЛог © (15.02.10 10:05) [40]
> Думкин © (15.02.10 05:46) [37]
> > А по теме - о каких парах речь?
>
> БарЛог © (14.02.10 21:18) [22]
А - вона про что речь. чОрт, а я вначале про другое прочитал. Понятно. Не знаю. :)
← →
Ega23 © (2010-02-15 11:09) [43]Куб, по-идее, октаэдром должен быть.
← →
Sha © (2010-02-15 11:12) [44]> Какое общее свойство у точек поверхности куба?
Одна координата по модулю в точности равна q,
а две другие по модулю не превышают q.
← →
DVM © (2010-02-15 11:32) [45]
> Sha © (15.02.10 11:12) [44]
> Одна координата по модулю в точности равна q,
Это получается не одна группа точек, а несколько (три) и свойства общие у них разные имхо.
> Думкин © (15.02.10 11:06) [42]
> То что они принадлежат границе?
Граница куба описывается математически одним уравнением? Иначе под ГМТ можно подогнать вообще любую фигуру, тело и совокупность точек.
> Что ты вкладываешь в эти слова - ГМТ?
Общепринято, вот это (там и упрощенное школьное определение и более общее) http://ru.wikipedia.org/wiki/%D0%93%D0%9C%D0%A2
← →
Думкин © (2010-02-15 11:40) [46]> DVM © (15.02.10 11:32) [45]
> Граница куба описывается математически одним уравнением?
Можно и одним - норму введи не евклидову, а модульную и все.
> Иначе под ГМТ можно подогнать вообще любую фигуру, тело
> и совокупность точек.
А это проблема? Я вообще великого сакрального смысла в словах ГМТ - не вижу.
> Общепринято, вот это (там и упрощенное школьное определение
> и более общее) http://ru.wikipedia.org/wiki/%D0%93%D0%9C%D0%A2
Ну и ладушки. У этих точек общее свойство - они лежат на границе куба. :)
← →
DVM © (2010-02-15 11:47) [47]
> Думкин © (15.02.10 11:40) [46]
> А это проблема? Я вообще великого сакрального смысла в словах
> ГМТ - не вижу.
Тогда непонятно, зачем вообще вводить понятие ГМТ, если все фигуры и тела ими являются по-умолчанию.
> У этих точек общее свойство - они лежат на границе куба.
> :)
А еще все они точки :)
← →
Думкин © (2010-02-15 11:50) [48]> DVM © (15.02.10 11:47) [47]
Смысл не в словах ГМТ, а в том как мы его наполняем.
Окружность же не ГМТ, а такое ГМТ, что....
А нужно, ну для иногда для наглядности, альтернативный способ задания - часто исторически первый. Да и как в той же Евклидовой ввести окружность как объект? Квадрат же можно иначе. Но вводя разные нормы, мы сможем вводить и другие выпуклые фигуры как ГМТ по подобию окружности. :)
← →
Думкин © (2010-02-15 11:59) [49]
> DVM © (15.02.10 11:47) [47]
Вот квадрат: квадрат, есть геометрическое местио точек, которые лежат на отрезках высекаемых двумя перпендикулярными парами паралльных прямых, таких, что расстояние между прямыми в первой паре, равно расстоянию во второй.
← →
DVM © (2010-02-15 12:00) [50]
> Думкин © (15.02.10 11:50) [48]
> Смысл не в словах ГМТ, а в том как мы его наполняем.
Это понятно.
Наверное да, версия с имеено ГМТ отпадает.
← →
Sha © (2010-02-15 12:02) [51]> Это получается не одна группа точек, а несколько (три) и свойства общие у них разные имхо.
вот тебе одна группа точекmax(
min([x]-1,1-[x],1-[y],1-[z]),
min([y]-1,1-[x],1-[y],1-[z]).
min([z]-1,1-[x],1-[y],1-[z])
)>=0
где [х] - модуль х
← →
DVM © (2010-02-15 12:10) [52]Тогда предположение номер 2.
Поверхности куба, пирамиды и пр, не имеют специальных названий, потому как не являются поверхностями. http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%B2%D0%B5%D1%80%D1%85%D0%BD%D0%BE%D1%81%D1%82%D1%8C
← →
Думкин © (2010-02-15 12:13) [53]
> DVM © (15.02.10 12:10) [52]
Это про гладкость?
← →
DVM © (2010-02-15 12:16) [54]
> Думкин © (15.02.10 12:13) [53]
> Это про гладкость?
Да
← →
Думкин © (2010-02-15 13:18) [55]
> DVM © (15.02.10 12:16) [54]
Я думаю, что тут в историю смотреть надо. У нагличан тех же.
← →
Sha © (2010-02-15 13:19) [56]> DVM © (15.02.10 12:10) [52]
> Поверхности куба, пирамиды ... не являются поверхностями
???
← →
Думкин © (2010-02-15 13:21) [57]> Sha © (15.02.10 13:19) [56]
Он про гладкость - в том смысле, что в ряде точек нет касательных плоскостей. :)
← →
Sha © (2010-02-15 13:33) [58]> Думкин © (15.02.10 13:21) [57]
А я про то, что поверхностями они являются, но не являются правильными поверхностями. :)
← →
Омлет © (2010-02-15 16:39) [59]эллипс & овал
← →
Омлет © (2010-02-15 16:40) [60]Это такие округлости, значит. Женщины замешаны.
← →
DVM © (2010-02-15 16:45) [61]
> Омлет © (15.02.10 16:39) [59]
> эллипс & овал
>
>
эллипс - эллиптическая кривая, эллипсоид - эллиптическая поверхность.
Квадрат - ? Куб -?
Хотя эллипсом называют иногда фигуру вместе с внутренностью, иногда границу и определения эллипса есть разные.
← →
Омлет © (2010-02-15 16:51) [62]В природе нет правильных фигур с плоскими гранями. Природе претит угловатость. Значит, фигуры с углами - неестественны, абстрактны и гносеологически не могут иметь содержания. Поэтому им не дают наполненных названий )
← →
DVM © (2010-02-15 16:53) [63]
> Омлет ©
> В природе нет правильных фигур с плоскими гранями
Есть кристаллы некоторые.
← →
БарЛог © (2010-02-15 17:35) [64]Омлет © (15.02.10 16:40) [60]
Насчёт женщин идея интересная)))
← →
Думкин © (2010-02-15 19:55) [65]> Омлет © (15.02.10 16:39) [59]
> эллипс & овал
Как писал тут один вундербар:"овал - это окружность 3 на 4"
:)
← →
Leonid Troyanovsky © (2010-02-15 20:12) [66]
> Думкин © (15.02.10 19:55) [65]
> Как писал тут один вундербар: "овал - это окружность 3 на
> 4" :)
Не. Это старый баян, с военной кафедры:
Эллипс - окружность, вписанная в квадрат с соотношением сторон 3:4.
--
Regards, LVT.
← →
Германн © (2010-02-15 20:16) [67]
> Не. Это старый баян, с военной кафедры:
Имхо в оригинале было:
Эллипс это круг, вписанный в квадрат со сторонами 3 и 4.
← →
Leonid Troyanovsky © (2010-02-15 20:37) [68]
> Германн © (15.02.10 20:16) [67]
Да, видимо, круг.
Но, мы, наверное, на разных кафедрах обучались.
Я - в МХТИ (ныне РХТУ) им Д.И.Менделеева.
--
Regards, LVT.
← →
БарЛог © (2010-02-15 20:45) [69]Т.е. одного из вас неправильно научили! :)))
← →
Leonid Troyanovsky © (2010-02-15 20:50) [70]
> БарЛог © (15.02.10 20:45) [69]
> Т.е. одного из вас неправильно научили! :)))
Научили правильно.
До сих пор помню многие военные мудрости химвойск.
Хотя, многое иное, из более профильного, легко
из памяти улетучилось.
--
Regards, LVT.
← →
Германн © (2010-02-16 00:52) [71]
> Leonid Troyanovsky © (15.02.10 20:37) [68]
А я в МИФИ. Но нашей группой на первом году занятий на кафедре командовал бывший капитан войск химзащиты. :)
Он много нам научных открытий преподал. :)
← →
Kerk © (2010-02-16 00:56) [72]
> Leonid Troyanovsky © (15.02.10 20:50) [70]
>
> > БарЛог © (15.02.10 20:45) [69]
>
> > Т.е. одного из вас неправильно научили! :)))
>
> Научили правильно.
> До сих пор помню многие военные мудрости химвойск.
А правда, что если гаубицу положить на бок, она будет стрелять за угол?
← →
KilkennyCat © (2010-02-16 01:53) [73]
> Kerk © (16.02.10 00:56) [72]
Правда. Но только специальными угловыми снарядами.
← →
Германн © (2010-02-16 01:59) [74]
> Kerk © (16.02.10 00:56) [72]
>
>
Правда. Но этот баян из другой серии анекдотов. Не про военную кафедру. В серии про военную кафедру анекдоты были другой направленности. Например. "Физики (химики, etc) могут этого не знать, но...".
"В военное время X (данная величина) может быть другая".
и т.п.
← →
korneley © (2010-02-16 02:07) [75]А как же "...но Советские солдаты из-за угла не стреляют!"?
← →
Германн © (2010-02-16 02:20) [76]
> korneley © (16.02.10 02:07) [75]
>
> А как же
А вот это как раз из той серии, которую вспомнил Kerk.
← →
Petr V. Abramov © (2010-02-16 03:03) [77]
> "В военное время X (данная величина) может быть другая".
а че так стеснительно про синус-то?
← →
Германн © (2010-02-16 03:41) [78]
> Petr V. Abramov © (16.02.10 03:03) [77]
>
>
> > "В военное время X (данная величина) может быть другая".
>
>
> а че так стеснительно про синус-то?
>
А при чём тут синус?
Или я не знаю сей анекдот?
← →
korneley © (2010-02-16 04:37) [79]
> Германн © (16.02.10 03:41) [78]
> А при чём тут синус? Или я не знаю сей анекдот?
Ну как же :) "... а в военное время синус может достигать и двух". Да таких баянов полно: "Вода кипит при 90 градусах. А, нет... Это я с прямым углом перепутал." и т.д.
← →
Petr V. Abramov © (2010-02-16 05:03) [80]
> korneley © (16.02.10 04:37) [79]
> ... а в военное время синус может достигать и двух".
не двух, а четырех.
правда, от преподавателя и/или обстановки на ТВД зависит.
:)
Страницы: 1 2 3 вся ветка
Форум: "Прочее";
Текущий архив: 2010.08.27;
Скачать: [xml.tar.bz2];
Память: 0.62 MB
Время: 0.057 c