Главная страница
Top.Mail.Ru    Яндекс.Метрика
Текущий архив: 2008.02.03;
Скачать: CL | DM;

Вниз

Новогодняя задачка   Найти похожие ветки 

 
DillerXX ©   (2007-12-31 17:03) [0]

Дан набор не более чем из 60^2 выражений вида x_i = x_j, либо x_i != x_j. x_i in [1..3] для любых i, где i всегда больше 60. Найти количество решений такой системы.
Просто дед мороз пришёл в плохом настроении, и задал детям такую задачку. Если дети её не решат, они не получат подарков. Помогите детям.


 
antonn ©   (2007-12-31 17:05) [1]

Имей совесть, новый год все таки %))))


 
DillerXX ©   (2007-12-31 17:06) [2]

Поправочка. Дети стали плахать и хныкать, тогда дед мороз чтобы облегчить детям задачку, огранил количество выражений 2*60.


 
korneley ©   (2007-12-31 17:08) [3]


>  x_i in [1..3] для любых i, где i всегда больше 60

Или это я торможу?


 
DillerXX ©   (2007-12-31 17:10) [4]

ЭЭ да, я ступил. i естественно не больше 60.


 
korneley ©   (2007-12-31 17:15) [5]


> тогда дед мороз чтобы облегчить детям задачку, огранил количество
> выражений 2*60.

Деда добрый, 3600 вариантов - не задача... Брутальным-форсом, и все дела... А вот 2 в 60-й, это уже Число. Или все-таки имелось в виду 120?


 
DillerXX ©   (2007-12-31 17:22) [6]

имелось ввиду 120. Как здесь можно перебор применить?



Страницы: 1 вся ветка

Текущий архив: 2008.02.03;
Скачать: CL | DM;

Наверх




Память: 0.47 MB
Время: 0.037 c
2-1200053064
Farel
2008-01-11 15:04
2008.02.03
Подсети


2-1199430043
Andreil
2008-01-04 10:00
2008.02.03
Вызов ДЛЛ из ЕХЕ


2-1199304844
aha
2008-01-02 23:14
2008.02.03
зашился в вычислениях CRC , полистал кучу литературы, пообращался


11-1183061021
[e]Bu$ter
2007-06-29 00:03
2008.02.03
UNICODE_CTRLS и TextAlign


15-1198676715
Cyrax
2007-12-26 16:45
2008.02.03
Таинственное исчезновение анкет...