Главная страница
Top.Mail.Ru    Яндекс.Метрика
Текущий архив: 2005.07.11;
Скачать: CL | DM;

Вниз

Задачка   Найти похожие ветки 

 
default ©   (2005-06-07 22:27) [0]

доказать, что из свойств умножения(или абстрактной операции
обладающей такими же свойствами)
1) ab=ba
2) abc=a(bc)
следует, что для любого числа n сомножителей верно
a1a2a3..an=aiajak..al; i,j,k,..,l - любая перестановка первых n натуральных чисел


 
TUser ©   (2005-06-07 22:43) [1]

Это очевилно, да четвертуют меня математики


 
Aldor ©   (2005-06-07 22:56) [2]

Очевидно, что индукцией это доказывается в одну минуту :)


 
default ©   (2005-06-07 23:15) [3]

нифига не очевидно
сегодня мне захотелось убедиться в справедливости этого(что подают в школе как догму)
ничего сложного, но всё-таки не банальная индукция
хотя моё доказательство самое короткое не претендует


 
palva ©   (2005-06-07 23:36) [4]

Сначала нужно доказать, что расстановка скобок не влияет на результат не только для трех сомножителей abc, но и для произвольного числа сомножителей abc...q Это доказывается индукцией по числу сомножителей. На индукционном шаге нужно рассмотреть ту операцию, которая выполнена последней и рассмотреть скобку слева и скобку справа от нее. Скобки слева убираем, а справа размещаем в обратном порядке (по индукционному предположению это возможно) типа так;
abc*(d(e(f...q)))...)
теперь по свойству 2) делаем так
= abcd*(e(f...q)))...)
и так далее, пока не избавимся от всех скобок.
После того, как это доказано, утверждение задачи становится осмысленным.
Коммутативность также доказываем по индукции. Индукционный шаг для
a1a2a3..an=aiajak..al
проводим так: сначала все сомножители справа за исключением последнего располагаем в том же порядке что и слева, затем последний меняем несколько раз со своим соседом слева, пока он не встанет на свое место.


 
default ©   (2005-06-08 09:29) [5]

palva ©   (07.06.05 23:36) [4]
вот такое, наверно, самое короткое
исходную задачу можно свести к тому, что нужно доказать возможность переставлять местами соседние сомножители(назовём эту операцию обменом) любого произведения
пользуясь обменом можно задать любую комбинацию сомножителей из исходной, например, устанавливая в качестве первого сомножителя нужный сомножитель, потом на место второго сомножителя поставить тоже нужный и тд. до получения нужной комбинации
докажем допустимость операции обмена
пусть есть какое-то произведение abcdefghijk...
возьмём по произволу сомножитель(не нарушая общности)
пусть это будет f
рассмотрим начало этого произведения кончая f
abcdef=[abcd=x]xef=[св-во 2)]x(ef)=x(fe)[св-во 1)]=xfe[св-во 2)]=abcdfe
и того:
abcdefghijk...=abcdfeghijk...
тем самым показали обмен сомножителей e и f и решили задачу


 
palva ©   (2005-06-08 15:04) [6]

default ©   (08.06.05 09:29) [5]
По-моему, нормально.



Страницы: 1 вся ветка

Текущий архив: 2005.07.11;
Скачать: CL | DM;

Наверх




Память: 0.48 MB
Время: 0.051 c
3-1117434692
silvestr
2005-05-30 10:31
2005.07.11
Как подключиться к удалёной базе MS SQL 2000 - MSDE


14-1118490897
VMcL
2005-06-11 15:54
2005.07.11
Человек с неуравновешенной психикой


3-1117530037
Term
2005-05-31 13:00
2005.07.11
Вставка большого количества записей


1-1118420101
Pav
2005-06-10 20:15
2005.07.11
Работа с файлами в Delphi


14-1118050027
diwww
2005-06-06 13:27
2005.07.11
отследить, куда пишутся временные файлы