Главная страница
    Top.Mail.Ru    Яндекс.Метрика
Форум: "Основная";
Текущий архив: 2002.01.08;
Скачать: [xml.tar.bz2];

Вниз

Уравнение третьей степени.   Найти похожие ветки 

 
mashinist   (2001-12-16 23:16) [0]

Я тут, похоже всех уже задолбал со своей математикой, но все же. У кого-нибудь есть кусок кода для решения уравнения третьей степени вида ax^3 + bx^2 + cx + d = 0, причем a,b,c,d: extended;

Помогите !


 
Builder   (2001-12-17 02:35) [1]

А не легче ли чем долбать, сесть и написать самому ?

Берещь любую книжку по численным методам - это есть в первом разделе.


 
mashinist   (2001-12-17 11:58) [2]

Не получается.
Уже пробовал.


 
Romkin   (2001-12-17 12:19) [3]

http://alglib.chat.ru/equat/index.html#cube
По-моему, исчерпывающе
Но, вообще-то, уравнения выше второй степени обычно решают не по точным формулам, а по алгоритмам нахождения корней полиномов n-й степени


 
savva   (2001-12-17 12:31) [4]

вот что предложил редактор блок схем

Procedure CubeEquation(a,b,c:real; var nr:byte; x:array[1..3] of real);
// тока почему то не описаны параметры 8)) сам опишешь
begin
p:=-a*a/3+b;
q:=2*a/3*a/3*a/3-a*b/3+c;
QH:=(p/3)*(p/3)*(p/3)+(q/2)*(q/2);
if QH=0
then
begin
nr:=3;
AH:=abs(q/2);
if AH<>0
then
begin
AH:=sign (q)*exp(ln(AH)/3)
end;
x[1]:=2*AH-a/3;
x[2]:=-AH-a/3;
x[3]:=-AH-a/3
end
else
begin
if QH>0
then
begin
AH:=-q/2+sqrt(QH);
AH:=sign (AH)*exp(ln(abs(AH))/3);
BH:=-q/2-sqrt(QH);
BH:=sign (BH)*exp(ln(abs(BH))/3);
x[1]:=AH+BH-a/3;
if AH=BH
then
begin
nr:=3;
x[2]:=-(AH+BH)/2-a/3;
x[3]:=-(AH+BH)/2-a/3
end
else
begin
nr:=1;
x[2]:=-(AH+BH)/2-a/3;
x[3]:=(AH-BH)/2*sqrt(3)
end;
end
else
begin
nr:=3;
u:=-q/2/sqrt(-p*p*p/27);
u:=arccos(u);
x[1]:=2*sqrt(abs(p/3))*cos(u/3)-a/3;
x[2]:=-2*sqrt(abs(p/3))*cos(u/3+Pi/3)-a/3;
x[3]:=-2*sqrt(abs(p/3))*cos(u/3-Pi/3)-a/3
end;
end;
end;


не знаю, стоит ли доверять...


 
SergVlad   (2001-12-17 13:58) [5]

To mashinist
Все еще борешься со своими регуляторами ?


 
Юрий Зотов   (2001-12-17 14:59) [6]

> Romkin © (17.12.01 12:19)

Позволю себе поправку - выше третьей, а не второй. Для кубических же уравнений есть точные формулы - например, формула Кардано. Это намного проще, быстрее и точнее.


 
mashinist   (2001-12-17 15:40) [7]

Спасибо !!!




Страницы: 1 вся ветка

Форум: "Основная";
Текущий архив: 2002.01.08;
Скачать: [xml.tar.bz2];

Наверх





Память: 0.56 MB
Время: 0.025 c
14-22331
vasco
2001-10-26 17:57
2002.01.08
А много ли левшей среди программистов?


14-22320
Alexandr
2001-11-14 14:13
2002.01.08
Wow


1-22047
handra
2001-12-17 13:12
2002.01.08
Создание справки


1-22091
Mikhalyov Dmitry
2001-12-19 16:02
2002.01.08
вопрос из Pascal


14-22386
Дремучий
2001-11-08 21:13
2002.01.08
Интересно? Насколько?





Afrikaans Albanian Arabic Armenian Azerbaijani Basque Belarusian Bulgarian Catalan Chinese (Simplified) Chinese (Traditional) Croatian Czech Danish Dutch English Estonian Filipino Finnish French
Galician Georgian German Greek Haitian Creole Hebrew Hindi Hungarian Icelandic Indonesian Irish Italian Japanese Korean Latvian Lithuanian Macedonian Malay Maltese Norwegian
Persian Polish Portuguese Romanian Russian Serbian Slovak Slovenian Spanish Swahili Swedish Thai Turkish Ukrainian Urdu Vietnamese Welsh Yiddish Bengali Bosnian
Cebuano Esperanto Gujarati Hausa Hmong Igbo Javanese Kannada Khmer Lao Latin Maori Marathi Mongolian Nepali Punjabi Somali Tamil Telugu Yoruba
Zulu
Английский Французский Немецкий Итальянский Португальский Русский Испанский