Главная страница
Top.Mail.Ru    Яндекс.Метрика
Текущий архив: 2007.12.09;
Скачать: CL | DM;

Вниз

векторное произведение векторов с произвольной размерностью   Найти похожие ветки 

 
palva ©   (2007-11-11 21:33) [4]

Когда векторное произведение определяют физики, они имеют ввиду обычное трехмерное пространство. Линия действия такого произведения перпендикулярна одновременно обоим сомножителям и определена однозначно. А если мы в 4-мерном пространстве попробуем определить прямую перпендикулярную двум данным ненулевым векторам, то обнаружим, что таких линий очень много и они образуют целую плоскость. В четырехмерном пространстве можно определить векторное произведение сразу трех векторов, взятых в определенном порядке. Аналогично для n-мерного пространства. Если в нем определено понятие перпендикулярности и определено понятие право-лево, то каждому набору из (n-1) векторов можно сопоставить их "векторное произведение", которое будет аналогом обычного векторного произведения, то есть перпендикулярно всем сомножителям, иметь длину равную (n-1)-объему паралеллепипеда, натянутого на сомножители и направленную так, что сомножители с добавленным произведением образуют правую систему векторов. Свойства линейности антисимметричности и многие другие хорошие свойства обычного векторного произведения сохраняются.



Страницы: 1 вся ветка

Текущий архив: 2007.12.09;
Скачать: CL | DM;

Наверх




Память: 0.46 MB
Время: 0.024 c
1-1190540404
Tack
2007-09-23 13:40
2007.12.09
Отладчик BDS2006 некорректно отображает значения Int64


15-1194734939
Johnmen
2007-11-11 01:48
2007.12.09
А где Digitman?


15-1194950345
novill
2007-11-13 13:39
2007.12.09
Подскажите бесплатную(шароварную) программу типа Service Desk


2-1194980698
pioner85
2007-11-13 22:04
2007.12.09
Извращения с DateTimePicker


15-1194602578
Z@ichik
2007-11-09 13:02
2007.12.09
Преобразование Аксельмана