Форум: "Потрепаться";
Текущий архив: 2005.02.06;
Скачать: [xml.tar.bz2];
ВнизПятничные задачки Найти похожие ветки
← →
Ega23 © (2005-01-14 15:20) [0]Что-то давно похождений от Васи Пупкина не было.
В качестве компенсации предлагаю одну задачку, которую я давно для себя придумал ещё в армии, стоя на посту дневального :о)
Механические часы. Циферблат - стандартный, на 12 часов. Часовая, минутная и секундная стрелки.
Вопрос: Если предположить, что часовая и минутная стрелка движутся непрерывно, а секундная - дискретно (мгновенно перепрыгивает с одного деления на другое), то будет ли когда-нибудь на часах положение стрелок под 120 градусов друг-к-другу?
Вопрос 2: см. Вопрос 1, только секундная также движется непрерывно.
З.Ы. Правильного ответа не знаю.
← →
Семен Сорокин © (2005-01-14 15:28) [1]
> В качестве компенсации предлагаю одну задачку, которую я
> давно для себя придумал ещё в армии, стоя на посту дневального :о)
> Механические часы. Циферблат - стандартный, на 12 часов.
<off>
часы висели напротив? :)))
ЗЫ. (из своего опыта) да тогда (дневальным) действительно реально нечем занять себя было.
← →
Анонимщик © (2005-01-14 16:14) [2]Не будут никогда ни в том, ни в другом случае.
← →
Анонимщик © (2005-01-14 16:31) [3]Угловая скорость вращения часовой стрелки:
Fch(t)=(2*pi/12*60*60)*t, здесь t - в секундах
Минутной:
Fmin(t)=(2*pi/60*60)*t
Угол между ними:
F(t) = Fmin(t) - Fch(t) = (2*pi)*(11/12*60*60)*t
Он составлет 120 градусов в моменты, которые находим из равенства:
F(t) = 2*pi/3 + 2*pi*n.
Здесь n принимает значения от 0 до 11, очевидно. Получим:
T1(n) = (12/11)*3600*(n+1/3)
Из этого следует, что угол в 120 градусов между часовой и минутными стрелками будет в моменты времени, когда количество секунд, прошедшее с 12-00-00, - нецелое. Тогда никак не получится угла в 120 градусов между минутной и секундной стрелкой в дискретном случае. Остается нерерывный.
Угловая скорость секеундной стрелки
Fsec(t)=(2*pi/60)*t
Угол между секеундной и минутной стрелой равен
Fs_m(t) = Fsec(t) - Fmin(t) = (2*pi/60*60)*59*t и это равно 2*pi/3 + 2*pi*k, где k - целое и меняется от 0 до 59. Получаем:
(59*T2(k)/60*60) = 1/3 + k
Теперь из двух уравнений
T1(n) = (12/11)*3600*(n+1/3)
(59*T2(k)/60*60) = 1/3 + k
Следует, что
708*n + 236 - 11*k = 11/3,
где n и k - целые (n от 0 до 11; k от 0 до 59) - очевидно, что решение отсутствует, поскольку левая сторона - число целое.
Страницы: 1 вся ветка
Форум: "Потрепаться";
Текущий архив: 2005.02.06;
Скачать: [xml.tar.bz2];
Память: 0.45 MB
Время: 0.034 c